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Foreword 
 

This project report is a part of submission for Simulation Science Laboratory course given by 

Prof. Uwe Naumann at RWTH Aachen University. The project was supervised by Dr. Jens 

Deussen over a period of four months from November 2021 to February 2022. 

The resulting software tracks local optima for a given objective function, where one variable in 

the objective function evolves with respect to a dynamic function specified by the user. The source 

code was written in C++ using dco/c++ library for automatic differentiation.  

The code also uses an external package called Global Optimization Toolbox, developed by Dr. 

Jens Deussen, which returns a list of convex regions where local optima will be present. 
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1 Introduction 
 

Mathematically speaking, optimization is utilizing mathematical methods and equations to 

determine the most efficient solution of a mathematical model which describes the problem of 

interest. In general, this mathematical model is a simplified modeling of a rigorous problem in 

practice such as minimizing the cost of an airline company, minimizing the costs of a production 

manufacturing industrial unit with maximizing of efficiency, design, and production rate.  

The first step in optimization is defining the objective function of the problem; a quantitative 

measure of the performance of the system under study. This objective could be profit, time, 

potential energy, or any explicit continuous or discrete function of various input parameters. As 

an instance, for designing a process problem, it is feasible to decrease the investment costs while 

augmenting the operational costs, hence, an ongoing trade-off of opposing effects of parameters 

must be studied. [1] 

The objective could be a scalar or vectorized explicit function equation or any discretized value 

of an independent simulation model depending on certain characteristics of the system, called 

variables or un-knowns. The aim in optimization is to find values of the variables that optimize the 

objective value. Often, the variables are restricted, or constrained, due to physical phenomena 

restriction (e.g., thermodynamic equilibrium), limited resources (available energy, manpower, 

etc.) or specified product quality. As a result, the final optimization model consists of  

• An objective function 

• A mathematical model for the description of the problem 

• Additional constraints on variables 

 

1.1 Classification of Optimization Problems 
The general form of an optimization problem is: 

 

min
𝑥̅∈ℬ

ℎ(𝑥̅) 

                                           s.th. 𝑓(𝑥̅) = 0 

𝑔(𝑥̅) ≤ 0 

(1.1) 

 

In which the ℎ(𝑥̅) is the objective of the problem, the 𝑓(𝑥̅) is the equality constraint, and the 

𝑔(𝑥̅) is demonstrating the inequality constraint. The solution must lie in feasible region ℬ of the 

problem. Furthermore, the mathematical optimization problems are categorized with respect to 

the type of the objective function, the constraints and the variables. Constraints can be equality 

or inequality types (constraints are not necessarily present). The objective function and the 

constraints can be linear or non-linear. Variables can be discrete or continuous. The space of the 

degrees of freedom can be finite or infinite dimensional. For time dependent problems, the space 

of the degrees of freedom is infinite dimensional. The solution 𝑥∗(𝑡) is a function of time. 

Based on various combinations of above-mentioned cases, the general classification of an 

optimization is as follows: 
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• Linear Programming (LP): The objective function and the constraints are linear. 

• Quadratic Programming (QP):  The objective function is quadratic, and the constraints 

are linear. 

• Nonlinear Programming (NLP): The objective function or at least one constraint is 

nonlinear. 

• Integer Programming (IP): All variables are discrete. 

• Mixed integer Programming (MIP): Continuous and discrete variables occur. These 

problems can be linear (MILP) or non-linear (MINLP). 

• Dynamic Optimization (DO): The solution is a function of time, in general the constraints 

are differential equations with a time-like independent variable. 

• Stochastic Optimization 

 

In addition, the terms Local and Global Optimization are used when describing such 

algorithms. Local optimization means the best solution in a subset of the possible local region 

around the given initial point, whereas global optimization aims at finding the best of all possible 

solutions. 

A point 𝑥∗is a global minimizer if 𝑓(𝑥∗)  ≤ 𝑓(𝑥) ∀ 𝑥 ∈ ℬ. The ℬ is defined as feasible set for 

variables. Moreover, A point 𝑥∗ is a local minimizer if there is a neighborhood ℕ of 𝑥∗, such that 

𝑓(𝑥∗)  ≤ 𝑓(𝑥) ∀ 𝑥 ∈ ℕ. [2] 

In principle, a global solution is always desired, and it is the main aim of any mathematician to 

develop an algorithm to find the global optimum variables for the problem of interest. However, 

one can only ensure the existence of a global minimum in a convex problem. The problem ( is 

considered to be convex if the feasible set ℬ is convex and if the objective function is convex in 

ℬ. But in practice, almost all problems are non-convex ones. In global optimization, two 

approaches are distinguished: the deterministic and the stochastic methods.  

Branch and Bound (BB) is a class of deterministic methods for the global solution of linear and 
nonlinear mixed-integer programs. It guarantees to find an optimal solution to linear and convex 
nonlinear problems. For a non-convex nonlinear function with multiple local minima, finding the 
global solution is cumbersome. To overcome this issue, one way is to seek to find the convex 
regions in the domain of the target problem and solve the problem in those ranges. 

 

1.2 Dynamic Optimization 
 
Dynamic optimization problems involve time-dependent variables and time-dependent 

constraints. Due to the time-dependency, such problems are of infinite dimension. However, most 
practical methods for solving optimal control problems require a finite set of variables and 

constraints. First, a fixed time horizon of [𝑡0;   𝑡𝑓] is considered. All variables 𝑥(𝑡) and 𝑦(𝑡) are 

dependent on time 𝑡 ∈ [𝑡0;  𝑡𝑓 ]. The variables 𝑥(𝑡) are called differential variables or more 
general, state variables.  

 
In this project, simulation of dynamical systems is illustrated by differential algebraic equations 

and the primal optimum variable of the system is found by optimization. For this purpose, after 
discretizing the dynamical equation with some numerical methods such as Explicit Euler, 
deterministic global optimization methods such as BB is applied to solve the optimization problem. 
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However, as described in detail in [3], finding the global optima of a non-convex function is an 
expensive procedure. For this purpose, in order to reduce the simulation time of solving 
optimization with a global algorithm, the local and global solver could be merged to solve the 
overall problem with acceptable solution accuracy. After discretizing the time domain to small 
ranges, local optima for the time dependent objective and constraint functions can be found 
utilizing a local solver as proceeding with time steps. With certain conditions, the global solver 
could be used to produce convex ranges in which the local solution would be equal to the global 
solution. As a result, with aid of the local optimization, the position of all local optima could be 
tracked over time and the minimum value of this local solutions in each domain is considered to 
be the global optimum.  

 
In this project, the general dynamic problem is in the following form: 
 

   

 

𝑦(𝑡) = 𝑎𝑟𝑔min
𝑥̅∈ℬ

ℎ(𝑡, 𝑥(𝑡), 𝑦∗, 𝑝) 

 

𝑥(𝑡)̇ = 𝑓(𝑡, 𝑥(𝑡), 𝑦(𝑡), 𝑝) 
 

𝑦 ∈  [𝑦𝐿 , 𝑦𝑈] 
 

𝑡 ∈  [𝑡0, 𝑡1] 
 

(1.2) 

   

The state variables x(t) is uniquely determined by the Ordinary Differential Equation. Using 
static scheduling, the global search is applied once at start of the simulation, after certain number 
of time steps, or when the step has already reached the boundaries of the domains. In each time 
range, the local minima are calculated via Gradient Descent method. In the next sections, firstly, 
the theoretical background for solving the dynamical optimization problem will be studied and 
some toy problems will be introduced to test the developed algorithm. Moreover, the global solver 
of the project is developed and provided by Dr. Jens Deussen known as Global Optimization 
Toolbox (GLOPT). Subsequently, the layout of the overall software will be illustrated in section 3. 
At the end, the results for each toy problem are shown and the behavior of the overall solver on 
each toy problem is studied.  
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2 Theoretical Background 
Given the problem proposed in the motivation, it can be divided into two simpler kinds of 

problem, that is a Minimization Problem and Solving a Differential Equation. In this chapter an 
overview of each individual problem will be presented and the chosen approach to solve it. 

2.1 Global Optimization 

According to [4] Optimization is a field of applied mathematics that deals with finding the 

extremal value of a function in a domain of definition, subject to various constraints on the variable 

values. When describing this problem in a mathematical form, one gets the following: 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ℎ(𝑥) 
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑓𝑖(𝑥) ≤ 𝑏𝑖, 𝑖 = 1,… ,𝑚. 

(2.3) 

 

Here the function ℎ ∶  𝑹𝑛  →  𝑹 refers to the function from which it is wished to find the minimum, 

and it is usually referenced as objective function. Meanwhile the functions 𝑓𝑖 ∶  𝑹
𝑛 → 𝑹 are the 

(inequality) constrain function, and the constants 𝑏1, … . , 𝑏𝑚 are the bounds of the problem. 

Moreover, for the problems studied in the project it was assumed that the objective function is 

twice differentiable.  

Having such a problem, the first analysis that must be made is if the problem at hand 

corresponds to a convex problem. In other words, if the functions correspond to a convex function 

and if the feasible points belong to a convex set. That is so because according to the fundamental 

result in convex analysis a locally optimal solution of a convex problem is also globally optimal 

[4]. Moreover, it is also what differentiates the problem between a Global Optimization Problem, 

or a simple local Optimization Problem, since the first is necessarily not globally convex and may 

have many different local convex regions with its respectively local optima. 

Moreover, a convex set is defined according to [4] as a set 𝐒 ⊆  𝑹𝒏 for which any two points 𝑥, 𝑦 ∈

𝑺 and the segment between them is wholly contained in 𝑺, that is,  

 ∀𝑙 ∈ [0, 1]     (𝑙𝑥 + (1 − 𝑙)𝑦) ∈ 𝑺. (2.4) 

And a function 𝑓:𝑿 ⊆ 𝑹𝑛 → 𝑹 is convex if for all 𝑥, 𝑦 ∈ 𝑿 and for all 𝑙 ∈ [0,1] we have: 

 𝑓(𝑙𝑥 + (1 − 𝑙)𝑦) ≤ 𝑙𝑓(𝑥) + (1 − 𝑙)𝑓(𝑦). (2.5) 

 

As introduced in the first chapter the software GLOPT was used to define convex regions given 

a Global Optimization Problem. It takes as inputs the Optimization Function ℎ(𝑥) and the global 

boundaries 𝑏𝑖 and return all convex regions from the functions, and consequently all possible 

regions for the global optimum. From this point on the problem is divided in many smaller Local 

Optimization Problems, since for each region returned from the algorithm a single optimum is 

guaranteed to exist and a simple comparison between all local optima is enough to decide which 

in fact the global minimum.  

2.2 Local Optimization 
Given a twice differentiable convex function ℎ(𝑥): 𝑹 → 𝑹 with minimum at 𝑥∗ there exists a 

sufficient condition for its optimality, namely if  
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 ∇ℎ(𝑥∗) = 0.  (2.6) 

Thus, finding the value for 𝑥∗  ∈ 𝑹 for which this equation holds is the same as finding the 

solution of the minimization problem. Although sometimes it is possible to solve for 𝑥∗analiticaly, 

in most cases the problem must be solve iteratively by finding a sequence of points 𝑥(0), 𝑥(1), …  ∈

𝑹 𝒅𝒐𝒎 ℎ with 𝑓(𝑥𝑘) → 𝑓(𝑥∗) when 𝑘 →  ∞ [5]. For such algorithm that solves the optimization 

problem iteratively, a termination condition usually has the form 𝑓(𝑥𝑘) − 𝑓(𝑥𝑘−1) <  𝜖, where 𝜖 is 

a tolerance value.  

In this project, the algorithm chosen to find the solution of the Local Optimization Problem was 

the Gradient Descent Algorithm. It consists, given an initial point 𝑥(0), in creating a series of points 

𝑥(𝑘) by the following iterative function 

 𝑥(𝑘+1) = 𝑥(𝑘) −  𝛼∇ℎ(𝑥(𝑘)), (2.7) 

where 𝛼 is the step size and ∇ℎ(𝑥(𝑘)) is the gradient of the function ℎ applied in the last 

calculated 𝑥(𝑘) points, and 𝑘 ∈ 𝑵 is the iteration index. By walking in every iteration in the opposite 

direction of the gradient, the iterator approaches the minimum point, which is guaranteed to exits 

following the assumptions that the ℎ function is twice differentiable and convex. Furthermore, it is 

valid to comment on the sensibility of the method to the choice of the initial point 𝑥(0) and the 

iteration step size, since the convergence time varies and evolution of the 𝑥(𝑘) series changes 

deeply in function of these two parameters.  

 

 

Figure 1 - 1D example of Gradient Descent Method. Red line shows the path generated by the iteration scheme. 

In the Figure 1 two simple examples of the evolution of the steps from the Gradient Descent 

method is shown, to illustrate the sensibility of the method to two different evolution steps 𝛼. 

2.3 Differential Algebraic Equation  
The second part of the problem explored in this report is the solution of a Differential Equation. 

Although the problem can be extended to more complex forms of differential equations, it was 

considered for the project only First Order Ordinary Differential Equation on the form 

 𝑦′ = 𝑓(𝑡, 𝑦, 𝑥), 
𝑤𝑖𝑡ℎ 𝑦(𝑡0) =  𝑦0 𝑎𝑛𝑑 𝑡0 < 𝑡 < 𝑇 

(2.8) 
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Where 𝑥 ∈ 𝑹𝑛  is the coupling variable with the Minimization problem, and it is for the solution 

of the Differential Equation a passive variable and can be omitted. Furthermore, the function  

𝑓: 𝑹𝑛 → 𝑹𝑛 is a function of 𝑦 ∈  𝑹𝑛  and is derived with respect to the dynamic variable 𝑡 ∈ 𝑹. 

Since in many applications the dynamic variable 𝑡 is time, it is convenient to call it as such. Finally, 

the initial point (𝑡0, 𝑦0) is given and characterizes the initial condition. Problems like such are very 

well know and described in the literature and are also known as Initial Value Problems.  

From all the possible ways to solve the Initial Value Problem, one of the first methods that was 

presented, and one of the simplest one, is the Forward Euler Method. This method, first introduced 

by Leonhard Euler himself in his book Institutiones calculi integralis consist in constructing a 

solution for the differential equation by Taylor expanding the solution 𝑦 at the point 𝑦0 + ℎ, yielding 

 𝑦(𝑡0 +  ℎ) = 𝑦(𝑡0) + ℎ𝑦′(𝑡0) + ⋯ (2.9) 

With ℎ the step size and the dots representing the higher-order terms. Additionally, one can 

substitute the definition of the differential equation into the equation, thus becoming 

 𝑦(𝑡0 +  ℎ) = 𝑦(𝑡0) + ℎ𝑓(𝑡0, 𝑦0) + ⋯ (2.10) 

Finally, by neglecting the higher-order terms and generalizing the equation for any time 𝑡𝑛 with 

𝑛 ∈ 𝑵 the iteration index [6], one gets 

 𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑡𝑛, 𝑦𝑛). (2.11) 

These results were obtained for 1D problem but can easily be expanded for more dimensions 

by doing the same steps for every new dimension, therefore, the authors leave it as an exercise 

for the reader. 

2.3.1 Toy problems 
During the development of the algorithm proposed, a few Toy Problems were created so that 

the program could be tested, and the results could be analyzed. These problems will be first 

introduced in this chapter and further discussed after that the program structure be presented.  

2.3.1.1 Toy Problem 1 

 𝑥̇(𝑡) = −(2 + 𝑦)𝑥 

ℎ = (1 − 𝑦2)2 −  (𝑥 − 𝑝)sin (𝑦
𝜋

2
) 

𝑥(𝑡),  𝑦(𝑡),  𝑝 ∈ ℝ𝟏 
𝑥(0) = 1, 𝑝 = 0.5   𝑎𝑛𝑑  𝑡 ∈ [0, 1]. 

 
 
 
(2.12) 

The first problem consists of a differential equation and an optimization problem constrained 

to the 𝑹𝒏. For this problem it is also expected that the solver finds a local minimum at 𝑦 =  1 for 

𝑡 = 0 and that this minimum stays there until an event occurs at 𝑡 =  −log (𝑝)/3 when it is shifted 

to 𝑦 =  −1. 
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Figure 2 - Development of the objective function h as time evolves for Toy Problem 1 

2.3.1.2 Toy Problem 2 

 𝑥̇(𝑡) = 𝑦 

ℎ = (𝑦 − 𝑥)2 + sin(𝑝𝑦) + 1 

𝑥(𝑡),  𝑦(𝑡),  𝑝 ∈ ℝ𝟏 

𝑥(0) = 1, 𝑝 = 3.0  𝑎𝑛𝑑 𝑡 ∈ [0, 2] 

 
 
(2.13) 

The Toy Problem 2, just as the first problem, is also found in the one-dimensional case for both 

the differential equation and the optimality problem. Nevertheless, it does not present only one 

event of minimum change, but has multiples events one followed by the other, with the 

characteristic of its optimal point continually shifting to the right. 

 

Figure 3 - Development of the objective function h as time evolves for Toy Problem 2 
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2.3.1.3 Toy Problem 3 

 𝑥̇(𝑡) = −(2 + 𝑦1 + 𝑦2)𝑝 

ℎ = (1 − 𝑦1
2)2 − (𝑥 − 𝑝) sin (

𝜋𝑦1
2
) 

+(1 − 𝑦2
2)2 − (𝑥 − 𝑝) sin (

𝜋𝑦2
2
) 

𝑥(0) = 1, 𝑝 = 0.5, 𝑡 ∈ [0,  1] 
𝑥(𝑡),  𝑝 ∈ 𝑹𝟏     𝑎𝑛𝑑     y ∈ 𝑹𝟐 

 
 
 
(2.14) 

For Toy Problem 3 the dimensionality of the objective function was raised such that it now 

belongs to the 𝑹2. This can be seen by the fact that now 𝑦 ∈ 𝑹2 and is expressed as 𝑦 = (𝑦1, 𝑦2).  

 

Figure 4 - Objective function at t=0 for Toy Problem 3 

As depicted in Figure 4, the general form of the objective function can be seen. 

2.3.1.4 Toy Problem 4 

 𝑥̇(𝑡) = (𝑦1,  𝑦2) 

ℎ = (1 − 𝑦1
2)2 − (𝑥 − 𝑝) sin (

𝜋𝑦1
2
) 

+(1 − 𝑦2
2)2 − (𝑥 − 𝑝) sin (

𝜋𝑦2
2
) 

𝑥(0) = (1,  1), 𝑝 = 3.0, 𝑡 ∈ [0, 2] 
𝑥(𝑡),  𝑦(𝑡) ∈ ℝ𝟐   and    𝑝 ∈ ℝ𝟏 

 
 
 
(2.15) 

In the last toy problem explored in this report, the dimensionality of both functions was raised 

so that both 𝑥(𝑡),  𝑦(𝑡) ∈ 𝑹𝟐. Besides that, the general form of the objective function can be seen 

in Figure 5 and it presents a more irregular surface with multiple convex regions.  
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Figure 5 - Objective function at t=0 for Toy Problem 4 
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3 Software Layout 
This section presents the architectural layout of the developed software. It starts with an 

overview of the main program flow and follows with a presentation of how to use the software. 

3.1 Software Architecture 
The developed software comprises of the main file that initializes the user input and supporting 

files that define the classes used for execution of the dynamical update of the function and the 

optimization routines. The class diagram of the source code organization is presented in Figure 

6. It presents the main files used to run the developed software, the data flow, and the main 

methods of the specified classes.  

 

Figure 6 - Class diagram of the source code 

 

The main control flow of the software is presented in Figure 7. It represents the activity diagram 

of the underlining logics behind the software execution. The input is initialized based on the user 

specifications. It is followed by the initialization of the initial time step of the state variable 𝑥 and 

the initial identification of the convex regions for the local optima at the current time step. 

Subsequently, the local solver is used to retrieve the actual global minimum within the convex 

regions, followed by execution of a checking procedure which decides whether the GLOPT should 

be run again if certain criteria are arising. If there is no need to run the update of the convex 

regions (which returns the program to the current time step with an additional execution of 

GLOPT), the state variable is dynamically updated with a forward Euler scheme. The values of 

the global minimum, state variable and optimization function value at location of the global 

minimum are written to the output file, until the final time step is reached.  

The decider function activates due to the following criteria: 

a) Static Scheduling: After certain number of time step iterations (static_sched_interval), 

which is specified by the user, the GLOPT is required to be run to recompute the convex 

regions where local minima are present. 
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b) Dynamic Scheduling: When the local minimum lies or leaves the boundaries of the 

previously computed convex regions, the GLOPT is requested to be run again before 

stepping to the next time iteration. 

The GLOPT can be run at every time step if static_sched_interval is set to 0. 

The local solver has been implemented based on the theoretical background of gradient 

descent method presented in section 2.2. Additionally, the convergence criterion is 

determined by a heuristically set tolerance in the code of the software and an internal loop 

of refining the tolerance up to a certain level has been also introduced to avoid stalling of 

the program. 

 

 

Figure 7: Activity diagram of the developed software with the definition of the input, output and main control flow of 
data 

 

The user definable inputs are specified in Table 1. These inputs define the setting of the 

problem. The user is also provided with few problem templates that can be found in the source 

code in the all_local_opt.cpp/main/Template problems section. 

Table 1 – User definable inputs for the program with short description and type. 

Name Name in the code Type Description 

Objective function objective lambda function Defines the objective 
function (h) that has the 
function value as output 

Dynamic function dynamic_f lambda function Defines the function (f) of 
the state variable as output 

Function parameters p vector of double/float Vector of all parameters 
that can be used in the 
functions 

Input: 

Parameters: 𝑏 𝑚𝑖𝑛, 𝑏 𝑚𝑎𝑥,𝑝, delta_t

static_sched_interval, x0, y, Time

Functions: 𝒐        ,𝒅 𝒏 𝒎    
N_steps = Time*(1/delta_t)

R n GLOPT:  on      gions  𝑔𝑙𝑜𝑏𝑎𝑙 𝑠𝑜𝑙 𝑒𝑟(𝑏 𝑚𝑖𝑛, 𝑏 𝑚𝑎𝑥, 𝒐        , 𝑝)

Local Solver:   𝒐    𝑔𝑟𝑎𝑑 𝑑𝑒𝑠𝑐𝑒𝑛𝑡( on      gion i ,𝑡𝑜𝑙,  )

 𝑖 = 0

 𝑘 = 0

 𝑘 <   . si  ()

yes

Update global min:  𝒎 𝒏  (    (  𝒐   ) <  ( 𝒎 𝒏));  𝒎 𝒏 =   𝒐   

 𝑘++

flag_glopt = 1 && 
GLOPT was not run 

for 𝑖

no

no

Decide to rerun GLOPT:  lag glo   𝑑𝑒𝑐𝑖𝑑𝑒 𝑓𝑙𝑎𝑔

 flag_glopt =1

Time Update:   𝑒𝑢𝑙𝑒𝑟  ,  𝒎 𝒏,  , 𝒅 𝒏 𝒎    

𝑖 ≤ N_steps

no

Output: 

 ,  𝒎 𝒏 ,  𝒎 𝒏   o  i = 0, . . ,   s   s

yes

 𝑖++
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Initial x value x0 vector of double/float Initial condition for the 
state variable 

Initial y value y vector of double/float Initial guess of the location 
of the argument of the 
objective function 

Lower boundaries b_min vector of double/float Lower boundary of the 
optimization problem in 
each dimension 

Upper boundaries b_max vector of double/float Upper boundary of the 
optimization problem in 
each dimension 

Time increment delta_t scalar double/float  

Period for calling global 
optimization  

static_sched_interval scalar integer Number of time steps 
between dynamic update 
of the state variable that 
can maximally pass 
between successive calls 
to the global optimization 
routine 

 

The software produces diagnostic information directly in the command terminal related to the 

execution time of the program and also the notification of when the GLOPT has been used and 

due to which criterion. The output file that hosts the data of the state variable, optimization 

variable, and optimization problem value for each time step is located in <build folder>/y_opt.dat. 

The first column represents the time vector, the subsequent columns represent the values (1 

column per dimension) of the state variable 𝑥, global minimum 𝑦𝑚𝑖𝑛, and the value of the 

optimization function ℎ. 

 

3.2 Software Manual 
This section presents an overview of how to use the developed software.  

Requirements: 

- The code relies on the external library dco/c++. Therefore, a working license and an 

installed version of dco 3.4.4 is required. 

- The code has been developed and tested using cmake/3.16.4 and suite intel/2021.4.0. 

Main steps: 

1. Get access to the software by contacting Dr. Jens Deussen. 

2. Configure the path to dco inside global_search_for_local_optima/cmake/ 

FindNAG_dco_cpp.cmake/line 15. 

3. Open all_local_opt.cpp and specify the user inputs in the main function. Use the 

provided templates as reference for specifying the problem setting. 

4. Create a build folder in the global_search_for_local_optima folder. Navigate to the build 

folder, open a terminal and build the executable by running “cmake ..” and “make” 

5. Run the executable “./all_local_opt” 

6. Check the output file build/y_opt.dat. 
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4 Results and Discussions 

4.1 Detection of optima 
Reliable detection of local optima is the cornerstone of our software because the selection of 

the global optimum will only be as good as the available choices. Whenever an event happens, 

there is a possibility of shift in the global optimum, which makes the resolution of event detection 

an important factor for tracking the global optimum. Another thing to keep in mind is that detection 

of new optima will happen only when GLOPT runs, whereas the local search will only optimize 

the optima within the already detected convex regions from the last GLOPT call. As we will see 

in the following sections, scheduling of GLOPT seriously impacts the tracking of global optima.  

We will discuss the results from each of our toy problems in the following sub-sections. For all 

the simulations we have used the time step size Δ = 0.01, which means a total of 101 times steps 

for toy problem 1 and 3, and 201 time steps for toy problem 2 and 4. 

4.1.1 Toy Problem 1 
Comparatively the simplest of all toy problems, here we have the expected evolution of the 

global optimum with just one application of GLOPT at first time step. Two convex regions 

containing 1 and -1 are given as output from GLOPT (Figure 8), which is followed by tracking of 

local optima in each of these regions until one of them goes out of the convex region as the 

system evolves with time.  

However, in this problem, the position of the local optima remains fixed while the global 

optimum jumps from one to the other, which is sufficiently captured by local optimizer alone after 

using GLOPT once in the beginning. 

 

Figure 8 - Toy problem 1 with GLOPT at t=0 only; (left) temporal evolution profiles; (right) relation between local 

optima and global optimum. 

4.1.2 Toy Problem 2 
This example is slightly more involved as the position of the local optima also shifts along with 

the value of the objective function. The effect of delayed detection of events is more pronounced 

on the tracking of global optimum (Figure 9). We compare the cases with different scheduling of 

GLOPT (case 2,3,4) with the case where GLOPT was implemented at every time step (case 1). 

For case 1, we observe in total of seven events, where old optimum disappears or a new one 

appears. While the disappearance is less affected by type of static scheduling used, it is always 
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followed by implementation of GLOPT triggered by dynamic scheduling. This is because as an 

optimum stop existing, local optimizer finds its value to be on the boundaries of the convex region, 

which is a dynamic trigger to implement GLOPT. This is followed by a revision of the convex 

regions, and the convex region of local optimum in question is lost. 

The appearance of optima is less obvious for the software, and the detection is delayed until 

GLOPT is implemented. This trigger for GLOPT isn’t inspired by appearance of optima, as both 

static and dynamic scheduling criteria are oblivious to it. Instead, the trigger happens because of 

some optimum getting to the boundary of its convex region or due to static scheduling count. This 

impacts the decision for the global optimum, which continues to be sub-optimal until the real global 

optimum is detected. One can see this happening in case 4, where the selection decision for 

global optimum of 𝑦 ≈ 3.5 is delayed till 𝑡 = 1.10 while it should have happened at 𝑡 = 1.01 as in 

case 1.  

 

Figure 9 - Toy problem 2 - relation between local optima and global optimum; dynamic scheduling of GLOPT with 
static scheduling interval of 0 (top left), 20 (top right), 50 (bottom left), 75 (bottom right). 

If we use the similar setting as used in toy problem 1, i.e., using GLOPT once in the beginning 

and local optimization at following time steps, we end with erroneous evolution of global optimum. 

The two convex regions identified in the beginning by GLOPT serves the region to look for local 
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Figure 10 - Toy problem 2 - relation between local and global optima using GLOPT just once at t=0 

optima in all the time steps. No events are identified. This is an oversimplification of the problem 

at hand which models the assumption of no event.  

 

4.1.3 Toy Problem 3 
Similar to toy problem 1, the positions of local optima are fixed. However, here we have four 

local optima, all of which are identified by the GLOPT in the first timestep itself. This makes it 

optimal to use GLOPT only once, followed by local optimization within the convex regions as no 

event happens. The global optimum shifts from one local optimum to the other (Figure 11). 

 

Figure 11 - Shifting of global optimum (pink circle) from one local optimum (white cross) to other for toy problem 3; 

t=0.0 (left); t=0.17 (right). 

 

4.1.4 Toy Problem 4 
Similar results were achieved here as in toy problem 2, where several local optima appear and 

disappears, and the global optimum jumps from one to another. Comparing with the case where 

GLOPT is implemented at every step, the frequency of GLOPT implementation impacts 

profoundly the detection of new local optima, subsequently also the global optimum. We have 
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attached a video link in the Appendix 6.1, in which one can see the evolution of optima under 

different GLOPT scheduling conditions. 

 

4.2 Computational effort 
Conducting a global search for all the optima is computationally more intensive than running a 

local optimization over the convex regions. Therefore, the clock time increases as the number of 

GLOPT implementations increase for different scheduling (Table 2).  

However, the accuracy of the optima tracking also comes down as the frequency of GLOPT 

implementations decreases, essentially making it a time-vs-accuracy trade-off. To express the 

error, we have used root mean squared (over all time steps 𝑡) norms of difference of global 

optimum 𝑦𝑡 with respect to the global optimum 𝑦𝑡,0 obtained from GLOPT implementation at every 

time step.  

 𝐸𝑟𝑟𝑜𝑟 =  𝑅𝑀𝑆𝑡(∥ 𝑦𝑡 − 𝑦𝑡,0 ∥ ) (4.16) 

This trade off becomes more obvious when only one GLOPT implementation happens in the 

beginning when computation time is the least giving the most inaccurate results. 

While an optimal scheduler would keep the trade off at its best automatically, our scheduler 

balances the trade-off well when static scheduling of 10 is used along with dynamic scheduling. 

Table 2 - Comparison of different GLOPT scheduling for toy problem 2 and 4. Error between the global optimum is 
computer with respect to the case where GLOPT is implemented at every time step. Dynamic scheduling was used in 
addition to static scheduling for all cases but one, i.e., local opt. only. 

 

 

 

 

 

 
 

4.3 Outlook 
We have seen that our criteria (static and dynamic scheduling) for combining global and local 

optima search can give us decent results both in terms of accuracy and computation time. 

However, in no way these criteria are optimal. While the present criteria can deal with optima 

disappearing events, it is oblivious to optima appearing events.  

One of the ideas to improve it is to use a backtracking based correction of the optima. Starting 

with a coarser interval for static scheduling, the software looks for new convex regions at a low 

frequency. When a new convex region appears, it undoes the computations till half of the time 

steps from the penultimate GLOPT, and reperforms GLOPT. If it finds a new convex region, it 

backtracks again in similar fashion, else it moves forward in time with a reduced static scheduling 

 Toy Problem 2 (1D) Toy Problem 4 (2D) 

Static 
scheduling 
interval 

# 
GLOPT 

Clock 
time (sec) 

RMS error # 
GLOPT 

Clock 
time (sec) 

RMS error 

0 201 0.53 - 201 4.02 - 

10 23 0.08 0.0077 61 3.00 0.2404 

20 15 0.06 0.3188 54 2.88 0.5677 

50 9 0.05 0.6108 42 2.80 0.8623 

75 10 0.05 0.7646 42 2.84 1.0801 

100 8 0.05 0.9990 37 2.82 1.4122 

Local opt. only 1 0.04 2.1605 1 2.49 3.0544 
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interval. Such a routine can adapt its scheduling interval to slow down around optima appearing 

events and speed up by relying more on local optimization when that is not the case.  

Additionally, using Newton’s method in place of gradient descent can make local optimization 

faster especially in regions where magnitude of gradients is small. However, as the GLOPT 

already gives us a finite convex region that confines the search area, we cannot be sure if the 

time gain will be sufficient to compensate the time needed for calculation of Hessian. 

Further, using higher order time stepping schemes in place of Euler method can boost the 

accuracy at some cost to the computation time. 
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6 Appendix 

6.1 Link for videos 
We have uploaded the video of local optima evolution over time for toy problem 3 and 4 at 

https://rwthaachende-my.sharepoint.com/:f:/g/personal/sarthak_kapoor_rwth-

aachen_de/EuA53jQQg0xFtPa3RO4Ft_MBmXYuHbobrfALlhY9lOxGdg?e=XYNdrp.  

https://rwthaachende-my.sharepoint.com/:f:/g/personal/sarthak_kapoor_rwth-aachen_de/EuA53jQQg0xFtPa3RO4Ft_MBmXYuHbobrfALlhY9lOxGdg?e=XYNdrp
https://rwthaachende-my.sharepoint.com/:f:/g/personal/sarthak_kapoor_rwth-aachen_de/EuA53jQQg0xFtPa3RO4Ft_MBmXYuHbobrfALlhY9lOxGdg?e=XYNdrp

